
NORMAL FORM

Normalization is the set of guidelines used to optimally design a database to reduce redundant

data. Normalization is a database design technique which organizes tables in a manner that

reduces redundancy and dependency of data.

A database that is not normalized may include data that is contained in one or more different

tables for no apparent reasons. Normalization is achieved by applying a number of tests called

normal forms to tables.

Goals of normalization

The goals of normalization are:

1. Eliminating data redundancy i.e. duplication of data

2. To minimize or avoid modification issues

3. To simplify queries

Normal form

Normal form is the way of measuring the level, or depth, to which a database has been

normalized. The most common normal forms are:

1. First normal form (1NF)

2. Second normal form (2NF)

3. Third normal form (3NF)

Other normal forms are Boyce /Codd normal form (BCNF), 4th normal form and 5th normal

form.

Note: Each subsequent normal form depends on the normalization steps taken in the previous

normal form. The 3NF is sufficient for most typical database applications.

First normal form (1NF)

A database table is said to be in 1NF if:

 It contains no repeating or duplicate fields/columns (i.e. each column name should be

unique)

 No data in a columns is multi-valued (i.e. each data field is single value)

 Each row of data has a unique identifier (or Primary Key)

 The attribute domain remains the same (i.e. age value cannot be in the name column)

For example, consider the un-normalized table below:

Item Colour Price Tax

T-shirt Red, Blue 12.00 0.60

Polo Red, Yellow 12.00 0.60

T-shirt Red, Blue 12.00 0.60

Sweatshirt Blue, Black 25.00 1.25

Pant White 6.00 0.30

 Table1: Un-normalized table

The table above is not in a first normal form because:

 Multiple items in color field (i.e. red and blue , red and yellow etc)

 Duplicate records/no particular primary key (i.e. row1 and row3)

So, how do you convert the table above into 1NF?

 Delete one of the duplicate records (i.e. row1 or row3)

 Expand the remaining rows such that each column has a single value

The resulting table now in 1NF is shown below.

Item Colour Price Tax

T-shirt Red 12.00 0.60

T-shirt Blue 12.00 0.60

Polo Red 12.00 0.60

Polo Yellow 12.00 0.60

Sweatshirt Blue 25.00 1.25

Sweatshirt Black 25.00 1.25

Pant White 6.00 0.30

 Table 2: 1NF table

Problems with tables in first normal form (1NF)

Insert anomalies: An Insert Anomaly occurs when certain attributes cannot be inserted into

the database without the presence of other attributes. Suppose a new item has just been

bought and is to be added into the table and you do not know the tax applicable, it will be

difficult to enter a few item of information and not all, thereby leading to Insertion Anomaly.

Delete anomalies: A Delete Anomaly exists when certain attributes are lost because of the

deletion of other attributes. If the White colour of the item Pant is no more in stock, and we

try to delete ‘white’ from the colour column, then we will be forced to remove the item Pant,

the price and the tax as well since the entire row will be deleted

Update anomalies: An Update Anomaly exists when one or more instances of duplicated

data are updated, but not all. For example, if the tax applicable to the price 12.0 changed,

then we will have to update all the rows where there is 0.60, else data will become

inconsistent i.e. there will be different tax value for the price 12.0 in different rows.

Second normal form (2NF)

A database table is in a 2NF if and only if:

1. It is in 1NF and

2. Every non-key attribute is fully functionally dependent on the primary key i.e. there

should be no partial dependency in the table

Consider the Table 2 above, the non-key attributes are colour, price and tax. The attribute

item is the primary key. The price and the tax are functionally dependent on the item and not

on the colour i.e. the item determines the price and not the colour.

So what do you do to normalize into 2NF?
Decompose the 1NF table and set up a new relation (table) for each partial key with its

dependent attributes. Make sure to keep a table with the original primary key and any

attributes that are fully functionally dependent on it.

Having decomposed the above table, the tables below are now in 2NF

Third normal form (3NF)

The third normal form's objective is to remove data in a table that is not dependent on the primary
key.

A database table is said to be in 3NF if:

 It is in a 2NF

 All non-key field depend only on the primary key – no transitive dependency (i.e.

Eliminate all fields that do not depend on the primary key by moving them into a

separate table)

Tables 2NF(b) is not in third normal form because Tax depends on price, not item.

To normalize to 3NF, decompose the table and set up a new table that includes the non-key

attribute(s) i.e. price, that functionally determine(s) other non-key attribute(s) i.e. tax

The tables below are now in 3NF.

https://1.bp.blogspot.com/--ZT1gDTD9t4/XXtu8I3Y0nI/AAAAAAAAAnY/pMzgsVeryvcaOxHzupIfC_xLwAysALTQgCEwYBhgL/s1600/2nf.png

https://1.bp.blogspot.com/-j-CyzJKvz3g/XXtu8Ie4yqI/AAAAAAAAAnY/4WyhbT8cml0DHthJ4a-J0gBWiLep5MwPwCEwYBhgL/s1600/3nf.png

