
RELATIONAL MODEL
A relational model gives a simple way of representing data in form of a two-dimensional table

called relation. Relational model was invented by Edger Codd. The columns or fields in the

table identify the attribute such as surname, lastname, age, gender, Admission number etc.

A tuple or row contains all the data of a single instance of the table such as a person named

James Bond. In the relational model, every tuple must have a unique identification or key based

on the data. In the table below, the Admission number is the key that uniquely identifies each

tuple in the relation. Keys are often used to join data from two or more relations based on

matching identification. Another concept used in a relational model is the foreign keys, which

are primary keys in one relation that are kept in another relation to allow for the joining of data.

Definition of terms
1. Field: is a named column in the relation (table). There are five fields in the student

relation above – Admission number, Surname, Last name, Age, Gender.

2. Tuple: is a record (i.e. a row of data in a relation). All tuples in a relation must be

distinct.

3. Domain: is defined as the set of all unique values permitted for an attribute. For

example, the domain of the field Gender as seen in the table above is M and F. Also the

domain of the attribute Surname consist the combination of all possible letters in the

alphabet. A domain is referred to in a relation schema by the domain name and has a set of

values.

4. The Degree (also called arity) of a relation is the number of fields in it. The relation

above is of degree 5.

5. The cardinality of a relation is the number of tuples in it. For example, the relation

above contains 6 tuples and hence the cardinality is 6.

6. A relational database is a collection of relations with distinct names that can be linked

together.

7. Relation schema describes the column heads of the table. The schema specifies the

relation’s name, the name of the field (or attribute or column) and the domain of each field.

For example the schema for the Student relation above is given below:

 Student (Admission number: integer, Surname: string, last name: string, Age: integer,

Gender: string).

https://1.bp.blogspot.com/-txWo8HA79Ws/Xhn-nJlJCYI/AAAAAAAAApg/DL2NhZeZYFA7PWz7qfxI79gsk5MkIuzNACEwYBhgL/s1600/relation.png

Relational model keys

1. Candidate key: Candidate keys are defined as the minimal set of fields which can uniquely

identify each record in the table. It is an attribute or a set of attributes that can act as a primary

key for a table to uniquely identify each record in that table.

2. Primary key: is any candidate key that is most appropriate to be the main reference key for the

table. It is used to establish relationship with other tables. It must never be null and must be

unique.

3. Foreign key: is generally a primary key of one table that appears as a field in another where

the first table has a relationship with the second. In other words, if we have a table A with a

primary key X that is linked to a table B where X is a field in B, then X is a foreign key in B.

4. Secondary key or alternative key: a table may have one or more choices for the primary key.

Collectively these are known as candidate keys as shown above. One is selected as the primary

key. Those not selected are known as secondary keys or alternative keys.

5. Composite key is combination of two or more columns in a table that can be used to uniquely

identify each row in a table

CREATING AND MODIFYING RELATION USING SQL
MS-Access, a relational DBMS typically provides a Graphical User Interface (GUI) that allows

the creation of a database and tables that store information about different subject. This can be

achieved using a query language called SQL (Structured Query Language). SQL can do more

than query a database; it can define the structure of the database, modify data in the database

and specify security constraints. A subset of the SQL that is used to define the structure of the

database and the table is called data definition language (DDL). In SQL, a relation is a table.

Creating a database using SQL
The syntax is as follows:

CREATE DATABASE databasename;

The “CREATE DATABASE” is the keyword and “databasename” is the name of the database.

For example assuming we want to create a database for students information, then the create

statement would be as follows:

CREATE DATABASE StudentDB;

Note: Use the Commands:

SHOW DATABASES; - to see the list of databases in the DBMS

DROP DATABASE database_name; - to delete a database from a DBMS

Creating relation (Table) using SQL

The syntax is as follows:

CREATE TABLE table_name (

Column1 datatype,

Column 2 datatype,

Column3 datatype,

.

columnN datatype,

PRIMARY KEY (one or more columns)

);

The “CREATE TABLE” is the keyword that tells the D system what to do table_name is the

name of the table, “PRIMARY KEY” is a keyword that indicate which column listed above is

to be used as the primary key, column1…ColumnN indicates the fields (or column as in a

table).

For example, if you want to create a table that stores student information (i.e. student table),

the statements below will achieve that.

CREATE TABLE StudentTbl (

AdmissionNumber CHAR (10),

Surname CHAR (20),

Lastname CHAR(20),

Age INT (2),

Gender CHAR (1),

PRIMARY KEY (AdmissionNumber)

);

Note: To delete a table from a database, use the command:

DROP TABLE table_name; (i.e. DROP TABLE StudentTbl).

MODIFYING RELATIONS USING SQL

Inserting tuple into a relation

In order to insert tuples (records) into a table, the INSERT command is used. Here is the syntax:

INSERT INTO Table_name (column1, column2, ….., columnN)

VALUES (value1, value2,…….., valueN);

OR

INSERT INTO table_name (value1, value2, ….., valueN);

For example to insert the first tuple as indicated in the table above, use the following

statements:

INSERT INTO StudentTbl (AdmissionNumber, Surname, Lastname, Age, Gender)

VALUES (1201, ‘James’, ‘Bond’, 15, ‘M’);

OR

INSERT INTO students (1201, ‘James’, ‘Bond’, 15, ‘M’);

Deleting tuple from a relation

To delete a tuple (record) from the table, use the DELETE Command. Here is the syntax:

DELETE FROM tablename

WHERE [condition];

For example, to delete a tuple with surname = James from the relation above, use the following

statement:

DELETE FROM StudentTbl

WHERE surname = ‘James’ ;

The database system deletes the first record with AdmissionNumber = 1201.

Note: The command ‘DELETE FROM students;’ - will delete all tuples (records)in the table.

Updating the content of a relation

The UPDATE query is used to modify the existing records in a table. The syntax is as follows:

UPDATE table_name

SET column1 = value1, column2 = value2, ……, column = valueN

WHERE [condition];

For example, if we want to change the gender of James Bond in the table above (i.e. from M

to F) , use the following statement:

UPDATE StudentTbl

SET Gender = ‘F’

WHERE surname = ‘James’;

The DELETE, INSERT and UPDATE statements above are part of the SQL subset called the

Data Manipulation Language (DML).

Querying Database
You query the database when you are requesting for certain information from the database.

You can include condition that such items you want should meet. The query helps us retrieve

data from the database.

In its simplest form, a query consists of two parts:

 A SELECT list, where the columns to be retrieved are specified

 A FROM clause, where the table or tables to be accessed are specified

Example
The following SQL statement selects the entire rows of data from the StudentTbl:

SELECT * FROM StudentTbl

It is also possible to specify certain columns to be retrieved from the StudentTbl.

Example
SELECT FirsName, LastName, Age FROM StudentTbl

We can structure the query to limit the number of columns of data to be retrieved from the

StudentTable.

Example
SELECT FirstName, LastName, Date

FROM StudentTbl

WHERE Age > 20

Integrity Constraint over Relations

Constraints
Constraints are the rules enforced on data columns in table. These are used to limit the type of

data that can go into a table. This ensures the accuracy and reliability of the data in the database.

Constraints could be column level or table level. Column level constraints are applied only to

one column, whereas table level constraints are applied to the whole table. The following are

commonly used constraints in SQL:
1. Entity Constraints

Entity constraints can be enforced when you create a table and assign certain column of the

table to be the primary key or and when you assign certain column of that table not to accept

NULL values. The PRIMARY key constraint tells the database engine that none of the rows

should have a duplicate value. The NOT NULL constraint ensures that a column cannot have

a NULL value

Examples

CREATE TABLE StudentTbl (

StudentId INT Primary Key,

 FirstName Varchar(15) NOT NULL,

 LasttName Varchar(15) NOT NULL,

 Gender Char(2),

 DOB DateTime

);

You can also use the UNIQUES constraint to ensure that all values in a column are different; that is, no

duplicate entries should exist in the table.

CREATE Table StudentData (

StudentId INT Primary Key,

 FullName Varchar(50) unique NOT NULL,

 Age INT,

 RegDate DateTime Default GETDATE()

);

The GetDate function inserts the current date into the table.
2. Domain Integrity

This constraint can be enforced by specifying that certain columns in the table should be of a

particular data type or that it should meet certain conditions. Example below employs two types

of constraints: CHECK and UNIQUE constraints. The CHECK constraint ensures that all

values in a column satisfy certain conditions (i.e. any record to be inserted must have age value

greater than or equal to 10).

Example
CREATE Table StudentData (

StudentId INT Primary Key,

FullName Varchar(50) unique NOT NULL,

Age INT Check(Age > = 10),

RegDate DateTime Default GETDATE()

);

The DEFAULT constraint provides a default value for the date column when no value is

specified.

 3. Referential Integrity

Referential Integrity constraint can be enforced using two or more tables. The first table is

called the parent table while any other table or tables will be regarded as the child table(s). The

child table(s) will be used to reference the parent table.

Example

Create the first table called the parent table:

CREATE TABLE Student(

StudentId INT Primary Key,

 FirstName Varchar(15) NOT NULL,

 LasttName Varchar(15) NOT NULL,

 Gender Char(6),

 DOB DateTime

);

Create the second table called the child table:

CREATE TABLE Subject(

 SubjectId INT Primary Key,

 StudentId INT Foreign Key References Student_tbl(StudentId),

 SubjectName varchar(15) Unique,

 TeacherName varchar(50) Not Null,

 Duration DateTime

);

StudentId in the Subject table is a foreign key that “references” StudentId in the Student table called

the parent table. The idea behind this is that a subject cannot exist for a student when that student is

not in the student (parent) table. For example, in order for a student to have a subject in

the Subject table, such student must exist in the Student table.

